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A SYSTEM FOR SPACECRAFT ATTITUDE CONTROL
AND ENERGY STORAGE*

By John D. Shaughnessy
Langley Research Center

SUMMARY

A conceptual design for a double-gimbal reaction-wheel—energy-wheel device
which has three-axis attitude control and electrical energy storage capability is given.
A mathematical model for the three-axis gyroscope (TAG) is developed, and a system of
multiple TAG units with a digital flight computer is propesed for attitude control and
energy storage for spacecraft application. Algorithms that determine torques required
for spacecraft fine pointing, coarse pointing, and reorientation are formulated. Control
laws are derived to provide the required spacecraft attitude control while minimizing
functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel .
speed differences. A magnetic torquer is proposed for system desaturation, and a con-
trol law that minimizes magnetic power consumption, while providing management of
angular momentum each orbit, is derived.

To evaluate the concept, a three-TAG system is sized for the A303B advanced solar
observatory mission which is a proposed shuttle-launched research and applications
module {(RAM); and a computerized research simulation of the TAG system and space-
craft dynamics is developed and used. Various modes of operation, including spacecraft
fine pointing in the presence of time-varying gravity-gradient disturbance torques, are
considered. Time-history plots of critical variables are presented and discussed for the
cases studied. |

The results of the study indicate the following. Three-axis attitude control and
energy storage using the TAG concept is feasible. In the derivation of the gimbal rate
control law, minimizing the sum of squares of gimbal angles plus their rates minimizes

the power required and causes the gimbals to favor their reference orientation continu-

ously. The reaction wheels can be continuously desaturated without causing any net torque
on the spacecraft by combined reaction-wheel speed feedback and controlled precession of
the gimbals. Using the TAG units for energy storage causes the angular momentum

*The information in this paper is largely based on a thesis submitted in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy in Aerospace
Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
November {973.
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level to be significantly higher than necessary for control only. For the example mission
studied, the pointing errors caused by gravity-gradient torques are controlled to less than
0.017 arc second.

INTRODUCTION

Earth orbital missions including Skylab and the proposed space-shuttle-launched
research applications modules (RAM's) studied under contract NAS 8-27539 (designated
the RAM study herein), as well as other missions, require attitude-control subsystems
for spacecraft fine pointing and reorientation. These missions alse require subsystems
to generate continuous electrical power for spacecraft and payload. Various arrange-
ments of reaction jets, momentum exchange devices, and magnetic torquers are used for
attitude control and stabilization, and solar cell arrays with batteries and fuel cells are
used for electrical-power generation and storage. Each of these systems has limiting
characteristics which make it undesirable for meeting all mission requirements, In
the area of attitude control, reaction wheels (refs. 1 to 3), both fixed and gimbaled, can
produce very precise fine pointing control, but are not efficient when used to counteract
long-term torques such as those caused by gravity gradients. Control-moment gyro-
scopes (CMG's) (refs. 4 to 7) of the double gimbal type can efficiently produce large
transfers of momentum but are not suitable for producing the precise high-frequency
torques necessary to meet high pointing stability requirements. Reaction jet control
systems are not efficient as primary attitude controllers for long duration missions
because of the high weight penalty associated with the onboard fuel requirements. Mag-
netic torquers (conceptually studied by W. Levidow and discussed in ref. 8) are not viable
for primary control tasks because control torques cannot be generated along the lines of
the Earth's magnetic flux which run approximately north and south. Reaction jets and
magnetie torquers are, however, useful in the desaturation of momentum storage systems.

To date, the most used electrical energy storage device is the nickel cadmium
(NiCd) battery. Even though these batteries are used extensively, they have several fun-
damental problems that must be considered in the design of a long-life energy-storage
system. Research indicates that battery lifetime and performance are seriously affected
by such factors as depth of discharge, number of charge-discharge cycles, temperature
variation, and charge-discharge rates. In near-Earth orbits these factors tend to reach
their maximum values and hence have the most effect. Fuel cells are primarily used only
for short-term missions because of the fuel weight penalty in long missions.

It has been suggested by R. Gorman that spacecraft solar array/battery systems be
replaced by solar array/flywheel-motor-generator systems. Furthermore, mounting the
flywheels in gimbals would result in a system capable of performing the dual function of
attitude control and energy storage. Studies by Lawson and Rabenhorst in references 9
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and 10 have indicated that new materials and design techniques will permit the develop-
ment of high-speed flywheels that have high-energy densities. In comparison with the
state-of -the-art batteries, the flywheels offer potential weight savings in addition to higher-
efficiency and reliability. Also, the fundamental problems associated with batteries men-

" tioned earlier are minimal or nonexistent with flywheel-motor generators.

The Langley Research Center has supported a 1-year study (refs. 11 and 12) to
determine the feasibility of a dual-function flywheel system. This effort is referred to
as the IPACS study throughout the remainder of this analysis. The IPACS study has
shown that for near-Earth orbit missions of long duration with medium to high pointing
accuracy requirements, and medium power levels, the dual function concept is feasible.

Anderson and Keckler in reference 13 have considered single-rotor and double-rotor
[PACS units for attitude control and energy storage. Their simulations have not indicated
any major problems associated with the dual-function concept as far as the capability of
the units to overcome the independent requirements that a spacecraft's subsystem's power
demands would place on the unit's flywheels for the configuration/mission simulated.
There are, however, minor interactions between momentum and energy storage that result
from hardware requirements. These interactions include a decrease in low-level torque
capability caused by increased gimbal friction resulting from larger sliprings to carry
power to and from the spin assembly, and increased control computer requirements to
handle complex control algorithms. '

Because each system concept is limited, combinations of systems are used in order
to meet mission requirements. For example, in Skylab, "MG's are used for coarse
pointing and reorientation, and direct-drive torquers control the telescope array with
respect to the main vehicle for fine pointing. In the shuttle-launched RAM spacecraft,
CMG's are proposed for coarse pointing and reorientation; reaction wheels, for fine
pointing. In both of these missions NiCd batteries are used for energy storage.

This analysis presents a conceptual design for a double-gimbal reaction-wheel—
energy -wheel device which is capable of producing fine pointing torques, coarse pointing
and reorientation torques, and electrical energy storage. A redundant system of two or
more of these units, each referred to as a three-axis gyroscope (TAG), is considered in
general terms for a class of spacecraft, and the necessary control algorithms are derived.
These control algorithms are designed to produce the required spacecraft control torques
and the energy transfer while minimizing functions of TAG gimbal angles, gimbal rates,
reaction-wheel speeds, and energy-wheel speed differences. A control law is also
derived for a magnetic torquer desaturation system.

To evaluate the concept, a three-TAG system is applied to one of the proposed free-
flying shuttle/RAM payloads. The units are sized, and control gains are determined to
meet the mission attitude control and power requirements. A hybrid computer simulation
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of the spacecraft/ TAG system is developed and used for real-time evaluation and verifi-
cation of the TAG system performance and capability.

SYMBOLS
A bar under a symbol indicates a column matrix or vector quantity. Dots over a

symbol denote derivatives with respect to time., A vector symbol enclosed in brack-
ets [J indicates a special skew symmetric matrix. For example, let

_ T
I=Ix Ty T
Then,
0 -T, 3."y
E£]£ r, 0 -r,
-ry ry 0
A TAG unit reaction torque coefficient matrix defined by equation (4)
B Earth's magnetic field flux vector
- - -1
C gimbal rate-control-law matrix, @ ll"T( IQ ll"T)
D determinant of RR'
Ep TAG system kinetic energy defined by equation (30)
Fa outer gimbal angle gain in equation (18)
Fgp inner gimbal angle gain in equation (19}
i(y) gimbal angle functions defined by equations (18) and (19)
. o BT(m=Ty" 1
G reaction-wheel control law matrix, R |\RR
n
H energy-wheel average spin momentum magnitude, fll Z IH AYHi
i=1



matrix of spin momentum magnitudes, diag (Hl .. .H, Hy... Hn)
matrix of spin momentum magnitudes, l_Hl . . A. Hn‘|T

bias momentum to be dumped

inner gimbal angular momentum

outer gimbal angular momentum

spacec‘raft angular momentum excluding the TAG units

TAG unit total angular momentum vector given by equation (2)

angular momentum of reaction wheel plus angular momentum of energy wheel
identity matrix

energy -wheel inertia matrix, diag( I

g Iga Tut)

energy-wheel axial and transverse moments of inertia

inner gimbal inertia matrix

reaction-wheel inertia matrix, diag (I

%

LA Lt
reaction-wheel- axial and transverse moments of inertia -
outer gimbal inertia matrix

spacecraft inertia matrix

axisymmetric spacecraft transverse_fnoment of inertia
spacecraft moments of inertia about principal axes
integers

magnetic torquer cost function



RC

RF

RM

ES

p.q,r

gimbal rate control law cost function
constrained gimbal rate control law cost function
reaction wheel control law cost function

constrained reaction wheel control law cost funetion

coarse pointing attitude gain matrix, diag (K acx  ¥acy Kacy

fine pointing attitude gain matrix, diag (K AFy X AFz)

gimbal angle function gain, KF = FA for i=1,. . .,n and KF=F

for i=n+1,. . .,2n
reaction-wheel desaturation gain

coarse pointing rate gain matrix, diag (KRCx KRCY

Krey)

fine pointing rate gain matrix, diag (KRFx KRFy KRFz-)

reorientation rate gain matrix, diag (KRMx KRMy
energy equalization time constant

. T
magnetic moment, EVIX My Mz,]
integer, m = 1 for maneuvers and m =0 for pointing
number of TAG units in system
charging power available in sunlight
discharge power with simultaneous experiment operation
peak discharge power increment

mechanical power required to torque energy wheels

inertially referenced body rates

KRMZ)

)
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Q diagonal gimbal rate weighting matrix, diag (ql R qn)

R spin-rate transformation matrix defined by equation (12)
R R matrix with first row deleted given by equation (23)
r unit vector
s ),e() sin{) and cos(), respectively
Ty TAG wheel acceleration torque given by equation (15)
’_I‘_B torque due to attached magnet
Tep desired spacecraft coarse pointing control torque defined by equation (5)
T gravity-gradient forque vector
Th max maximum gravity-gradient torque
L4
EFD desired spacecraft two-axis fine pointing control torque defined by
equation (6)
T desired TAG precession torque defined by equation (16)
_ , T
:I‘_H matrix of energy-wheel control torques, trHI AN THI_'.[]
_’_I‘_HC matrix of energy-wheel torque commands defined by equation (32)
TI/B inertial axes to spacecraft body axes transformation matrix
T];/S inner gimbal to spacecraft axes transformation matrix
. . ' T
. -T-L : matrix of rea,ct1o:r_1-wheel control torgues, [_TLI e e TLrj
TiD desired value of T
—T-LS reaction-wheel forque in spacecraft coordinates, -RT



desired spacecraft maneuver control torque defined by equation (7)
orbital period

outer gimbal to spacecraft axes transformation matrix

TAG system precession torque given by equation {14)

total wheel acceleration torque acting on spacecraft, 'R(TL + T )

TAG system output torque given by eguation (8)
TAG unit output torque given by equation (1)
time

inertial axes

orbit reference axes

inner gimbal axes

outer gimbal axes

spacecraft axes (used without S as subscripts)
outer and inner gimbal angles

ith unit outer and inner gimbal angles

ith unit reference gimbal angles

TAG system matrix given by equation (11)

TAG system gimbal angle matrix, ¢y . - ¢, By. - - 5E|T
desired TAG system gimbal rate matrix

ith energy-wheel energy error defined in equation (29)



spacecraft pitch angle defined in figure 10
e . T
spacecraft angular position matrix, ¢ @ ) _

measured coarse pointing attitude error [_cj) c QC z,!/C_JT where C
denotes coarse '

measured two-axis fine pointing attitude error LGF u’/F_JT where F
denotes fine

initial angular position vector cho %o gbo_JT where 0 denotes time zero
vector of Lagrange multipliers, l_hl Ag . A3JT

controlled spacecraft theoretical damping ratio

dummy variable of integration

spacecraft roll angle defined in figure 10

spacecraft yaw angle defined in figure 10

spacecraft inertially referenced body rates, l_p q 1_'JT

measured coarse pointing angular rate error- E}C dc rCJT where C
denotes coarse

measured two-axis fine pointing angular rate error LqF rFJT where F
denotes fine

measured reorientation rate vector LPM A rMJT where M denotes
maneguver ‘

desired reorientation rate vector LPMD 4MD rMDJT where D denotes
desired value ‘

matrix of energy-wheel spin rates, tqu .o wHI}JT

energy -wheel angular velocity with respect to inner gimbal



@1 inner gimbal angular velocity with respect to spacecraft

wy, matrix of reaction-wheel spin rates, Lle e “’Ln_]T
E’]{, reaction-wheel angular velocity with respect to inner gimbal
We orbital frequency

@q outer gimbal angular velocity with respect to spacecraft
Superscripts:

I inner gimbal coordinates

0 outer gimbal coordinates

R inertial eoordinates

S spacecraft coordinates

Mathematical:

( )'1 inverse of ( }

( )T transpose of { )

~ approximately equal

[: J rectangular matrix or special skew symmetric matrix
() column matrix

[; j row matrix

>> much greater than

diag () ()} is diagonal

>

definition
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sgn()  sign of ()

5x

57 partial derivative of x with respectto y

dx total derivative of x with respectto t

dt
S( )dr integral of () with respect to T
. :

Z() summation of () froln‘i‘ i=1 to i=n

i=1 '

Abbreviations:

ADC analog to digital converter

CMG -control moment gyroscope

DAM digital to analog multiplier

DCA digita;ly ct;ntrolled atténﬁator

IPACS integrated power and attitude control system
RAM research applications mddule

TAG three-axis gyroscope

CONCEPT DEFINITION AND ANALYSIS

TAG Unit Concept

A general description of the TAG unit is followed by a development of the TAG
mathematical model and torque equation. The principle of operation is discussed, and
the TAG system concept is introduced. ' ’

Unit description,- The TAG unit shown in figure 1 is basically a double-gimbal
gyroscope with an inner gimbal assembly comprised of a high-speed energy wheel spin-
ning coaxially inside of a low-speed reaction wheel which also could serve as a Safety
shield for the energy wheel. Tachometers are used to provide wheel-speed information.
The inner gimbal assembly is suspended in an outer gimbal with the inner gimbal axis
normal to the wheels' spin axes. The inner gimbal is servo driven with respect to the

11



outer gimbal with tachometers and resolvers used to measure inner gimbal rates and g
angles with respect to the outer gimbal. The outer gimbal is suspended in a mounting
structure with the outer gimbal axis normal to the inner gimbal axis. The outer gimbal

is servo driven with respect to the mounting frame, and tachometers and resolvers are

used o measure outer gimbal rates and positions., The mounting frame is used to attach

the TAG unit to the spacecraft.

TAG mathematical model.- It is assumed that the TAG unit may be represented
mathematically by a combination of four rigid elements ag shown in figure 1. These ele-
ments are the two axisymmetric wheels, the inner gimbal, and the cuter gimbal. A
moving spacecraft axis system is used as reference for the TAG components as shown in
figures 2 and 3. It is also assumed that, for each element, geometric axes are principal
axes, and the wheels' spin axis is coincident with the inner gimbal yy-axis as shown in
figure 3. '

The output torque equation for the TAG unit, derived in appendix A, is

—U ‘Eﬁ* [:QJ (1}

where the TAG unit total angular momentum is given by

s _ 0 T T
Hp = Tg/slowo + TosstoTo/s? + TI/SII‘_"} + TyalT/gt

1 1 T 1 1 T
+ TI/SIL(“—”L + Wy + TI/S@) + TI/SIH(E-’H +wp * TI/S-@-)

For the case of interest the spacecraft angular rates are much smaller than the normal
gimbal rates; the spin momentum of the energy wheel is orders of magnitude larger than
that of the gimbals or reaction wheel; and fthe acceleration torque of either wheel is much
larger than that of the gimbals. Thus, the torque equation may be approximated by

5 =HAle 5 R/E[T (3)
where & and £ are the relative angular rates of the outer gimbal and inner gimbal,

respectively, and H is the rate of change of the wheels' spin momentum magnitude H.
The transformation matrix A 1is given by

0 cB sB
A=|cBsa sBca  -cBew (4)
-cfeq  sBso ~Cf3sq
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Principle of operation.- If the TAG outer and inner gimbals are driven at rates ¢
and B, respectively, and if the wheels are accelerated so that H is nonzero, then the
TAG reaction torque exerted on the spacecraft will be the three-axis torque IISI given
by equation (1) and approximated by equation (3). Egquation (3) indicates that by actively
controlling the gimbal rates & and ,8 and the total wheel acceleration H/ H, the com-
ponents of the torque LI‘_S can be controlled. If two or more units are used, then the
torque due to reaction-wheel acceleration is used for fine pointing, and the torque due to
the gimbal rates is used to counteract the gravity-gradient torque and produce a reorien-
tation torque. ‘

Electrical energy is stored in the TAG by acuelerating the energy wheel to higher
speeds. Energy is transferred back to the spacecraft by using a generator attached to
the energy wheel. A net reaction torque on the spacecraft, during energy transfer, is
avoided by the use of two or more TAG units and by "'scissoring' the individual angular
momentum vectors to cancel the effect of varying momentum magnitudes.

Since most spacecraft attitude control and energy storage systems are designed to
be redundant, it is practical to consider a multiple TAG system where two or more units
are used. Such a system would provide fine pointiig control py accelerating the reaction
wheels. Coarse pointing and reorientation control would be generated by driving the gim-
bals in a controlled manner. Energy storage would be accomplished by accelerating only
the energy wheels while the individual momentum vectors would be scissored to maintain
the desired angular momentum.

TAG System Concept

In this section the TAG system configuration is described, and a discussion of the
system control law philosophies is given.

TAG system description.- The TAG system concept is shown pictorially in block
diagram form in figure 4. The system consists of at least two TAG units together with
spacecraft attitude sensor equipment, a digital flight computer, and a solar array.

The axis system for the TAG units is shown in figure 5 and is taken so that the outer
gimbal axes are parallel to the spacecraft's pointed axis. -“This configuration tends to
minimize inner gimbé.l motion since the gravity gradient torque is normal to the pointed
.axis; a roll symmetric spacecraft with its roll axis being the pointed axis is assumed.

The reference inner gimbal angles are taken as 0°. This assumption gives equal
positive and negative inner gimbal travel before the critical +90° limit is reached. Also,
for two-axis fine pointing, assumed here, it is desired to maintain the reaction-wheel spin
axes normal to the pointed axis so that electrical power is not wasted by generating
unwanted reaction-wheel torques about the pointed axis.

13



For systems with three or more TAG units the reference outer gimbal angles are
taken so that the sum of the momentum vectors is equal to zero., This arrangement
implies 120° separation for a three TAG system, 90% separation for a four TAG system,
and so forth. For a two TAG system, equal separation (180°) would result in loss of fine
pointing reaction-wheel control about the axis normal to the colinear vectors. In that
case, 90° separation is suggested. Zero total angular momentum ig taken as reference
since it gives the control system a spherical operating envelope. Also, prior to initiating
large-angle reorientations, it is desired to have zero net angular momentum so that as
the spacecraft reorientation rate develops, the net TAG system angular momentum will
develop along the maneuver axis. This condition allows the gimbals to remain stationary
with respect to the spacecraft once the rate is acquired and avoids undesirable momentum
vector orientations and/or mechanical gimbal stop encounters during the maneuver.

Afttitude control.- The attitude-control function operates as follows. (See fig. 4.)
Attitude control commands are telemetered from the ground and/or generated onboard the
spacecraft and are entered into the flight computer. Sensors, such as star trackers,

Sun sensors, inertial measuring units, and experiment integral sensors are used to deter-
mine current attitude data. The attitude command signals are compared with the meas-
ured spacecraft attitude data and error signals are computed. These error signals are
used to compute the desired nulling torques for maneuvering or pointing the spacecraft.

The three-axis spacecraft coarse pointing and reorientation control torques are
generated by driving the TAG gimbals. A control law computes the command gimbal
rates, in terms of the desired coarse pointing or reorientation torques and TAG gimbal
angles and angular momentum, to correct spacecraft angle and angular rate errors and
to minimize functions of TAG gimbal angles and rates continuously.

Two-axis spacecraft fine pointing torques are generated by the reaction wheels. A
control law computes commands for the reaction wheels in terms of the desired two-axis
fine pointing spacecraft torques and TAG gimbal angles to reduce the pointing errors and
to minimize the sum of squares of the reaction-wheel torques. The minimization of sum
of squares has the effect of minimizing the reaction-wheel power required by causing the
wheel having its spin axis closest to the desired fine pointing axis to be driven the hardest.

Interaction between the simultaneously operating fine pointing and coarse pointing
control laws is not a problem because the coarse pointing time constants are chosen to be
much lower than those of the fine pointing law.

Energy storage.- Electrical power functions to be performed by the TAG system
include the storage and regeneration of the electrical energy required by the spacecraft
and its payload. Solar arrays (see fig. 4) generate power for the spacecraft and payload
and for accelerating the energy wheels during the orbital day, The energy-wheel gener-
ators return the stored energy to the spacecraft during the orbital night. The flight
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computer manages the power transfer and maintains equal spin rates for the energy
wheels. The torque on the spacecraft caused by power transfer is counteracted automati-
cally by controlled precession of the gimbals.

_ Control system desaturation.- The spin rates of the reaction wheels are maintained
near zero to minimize the power required and to maximize their dynamic. range. This
condition is accomplished by feeding back each reaction-wheel speed in its corresponding
torque control law. The torque caused by this desaturation is counteracted by driving
the TAG gimbals and results in an equal and opposite precession torque on the spacecraft.

TAG system momentum accumulation due to gravity gradient and aerodynamic bias
torques on the spacecraft is controlled by using an electromagnetic torquer acting in the
Earth's magnetic field. A magnetometer is used to sense the Earth's magnetic flux
direction with respect to the spacecraft. These data are transferred to the flight com-
puter along with measured TAG momentum levels and gimbal angles. Appropriate cur-
rents are computed and induced in the magnetic coils to produce the required torques on
the spacecraft.

TAG and Spacecraft Control Laws

In this section the control laws for the spacecraft and the TAG system are formu-
lated and discussed. ‘

Coarse pointing control law.- The spacecraft coarse pointing control law computes
the three-axis control torques required to hold the spacecraft within specified coarse
pointing limits. It is the only source of spacecraft roll control. For this study a typical
linear law is assumed that gives the desired X Vg and Zg body-axis control torques
in terms of the measured body-axis attitude and angular rate errors with respect to
inertial space. This control law is defined by the following relation:

A
Tep £ Racle * Krellc | 5)

where 0 and £, are the measured coarse pointing attitude and angular rate errors,
respectively, and have the form :

T
bc=ltc Pc ¥cJ

T
2c=[Pc Y% TcJ

The attitude and rate gains for the control law depend on the spacecraft mass properties
and mission coarse pointing and damping requirements. The gains are expressed in
matrix form as
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Kac = diag(KACX Kacy KACZ)
Kpe = dia‘g(KRCX Krey KRCZ)
The method used for computing the elements of the gain matrices is discussed in appen-

dix B. Equation (5) is used as input to the gimbal rate control law.

Fine pointing control law.- The fine pointing control law computes the space-
craft Vg and zg body -axis control torques required to hold the spacecraft within
specified fine pointing error limits. The control law is linear and is defined as

+ Ko of2 (8)

A
Tep = Kapfr + Bpplip

where 6y and Q. are the measured fine pointing attitude and angular rate errors,
respectively, and are given by

F

fr = Pr VE
T

Or=ldr TF]

The fine pointing attitude and rate gains are given by
KAF = diag (KAFy KAFz)

Kpp = diag (Kppy KRFz)

The individual attitude and rate gains are selected to give the required pointing accuracy
and damping. Equation (6) is used as input to the reaction-wheel control law.

Reorientation control law.- The spacecraft reorientation control law computes com-

mand torques about the three spacecraft axes in terms of measured and commanded angu-
lar rates. The commanded rates are mission and spacecraft dependent but are on the
order of 6%/min, The reorientation control law used in this study is defined by the
following relation:

Typ 8 KRM{QM - _QMD} ~ (1)

where EM and EMD are the measured and desired angular rate vectors, respectively.
These vectors are given in terms of desired and measured body rates as



_ T
22vyp =[PMp %MD mMD]

Oy =P M rM_JT

The maneuver rate gains depend on angular acceleration requirements and are given by

Kpm = diag (KRMX Kpmy KRMZ)
Equation (7) is used as input to the gimbal rate control law.

The fine and coarse pointing control laws are deactivated during reorientations and
are reactivated only when the spacecraft attitude is within the range of the coarse pointing
sensors. Particular details of the reorientation logic are not considered pertinent to this
analysis and are omitted. The reader is referred to references 7 and 14 for further
details.

Gimbal rate control law.- The gimbal rate control law determines the gimbal rate
sommands that will produce the desired torques for spacecraft coarse pointing, reorien-
tation, reaction-wheel desaturation, and cancellation of the energy-wheel torque, while
simultaneously minimizing functions of the gimbal angles and rates. Before this control
law can be formulated, the torque equation for the TAG system must be developed.

The torque applied to a spacecraft by a TAG unit, due to gimbal motion, spacecraft
angular motion, and wheel acceleration is given by equation (1). For the system of
n units the net torque applied to the spacecraft is equal to the vector sum of the indi-
vidual torques given as

n "
Ir= z Ty (8)

where the superscript i replaces the superscript S of equation (1} and denotes the ith
TAG unit in the system.

In this analysis it is assumed, because of the high angular momentum of the energy
wheels, that the total angular momentum for each TAG unit -I-{—}I‘ given by equation (2) is
equal to the energy-wheel momentum alone given by the expression

i_
H' = H{ca;ch; | | (9)
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Here Hi is the energy-wheel momentum IH AYH and o i and §; are the outer and
inner gimbal angles, respectively, for the ith TAG unit,

Substituting equation (9) into equation (1), with the appropriate superscripts, and
using equation (8), the expression for the torque :[‘_T on the spacecraft can bhe written as

T = THy - [JRH - RH _ (10)

where T is a 3 by 2n matrix expressed as

0 AP 0 eBy . . - CBy
T=|cysoy . . . chsay sByeay . . . s@ co (11)

-cBlcal. .. -cBncan 33130!1- - ansan

and y, the relative gimbal rate vector, is given by

T R N R N

The spin momentum magnitude matrix H is given as

H=d1ag(H1. L H, Hy. .. Hn)
The skew symmetric matrix [g] is the spacecraft angular rate cross-product matrix.
The vector RH is the total TAG system spin momentum expressed in spacecraft coordi-
nates where the transformation matrix R is given by

=SBy .+ . - as,Bn
R = lcayefy . . - copcBy (12)
salcﬁl. - sancﬁn

and the spin momentum column matrix H is given by

H=|H. . .HIJT

The last term of equation (10) represents the torques on the spacecraft due to wheel
acceleration where
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The energy-wheel speeds are controlled so tha. they are equal at all times. Thus,
a further simplifying assumption can be made. The individual momentum magnitudes of
the TAG units are assumed to be equal to the average value so that the matrix ‘H defined
previously can be replaced by the scalar H given by

n
-1 :
H=gx z TA“Hi (13)
i=1 ‘
The first two terms on the right-hand side of equation (10) represent the torque Tp

on the spacecraft due to gimbal motion and angular motion of the spacecraft, and is given
as .

Tp = HIY - [)RH (14)

The remaining term-in equation (10) gives the torque _’ILA on the spacecraft due to
reaction-wheel and enerygy-wheel acceleration, and is given by

T, = -RH | (15)

By ronsidering the spacecrait torque requirements and the torque equation (14),
the desired precession torque EG is defined in spacecraft coordinates as

A -
Tg& (1 -m)Top + m(EMD + [EB;]RE) KgRwy, + Ry (16)

where m = 1 for reorientation and m = 0 for pointing. The command torques ICD
and EMD are given by equations (5) and (7). The term @Rﬁ cancels the TAG torque
on the spacecraft due to the spacecraft angular rate during reorientations. (The elements
of Q, R, and H are obtained from measurements.) The third term in equation (16)
cancels the reaction-wheel speed desaturation torque. The measured reaction-wheel
speeds are given in matrix form by

~ ‘—"Lzlf’Ll' ¥ 'wLnJT

The scalar Kp is the desaturation gain, and the matrix R. transforms w1, to space-
craft coordinates. The last term in equation (16) cancels the energy transfer torque.
The matrix of energy-wheel torque commands is given by

Thc = [mct - - - THCnJT

and is derived later. The matrix R transforms Ty into spacecraft coordinates.
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The gimbal rate control law is based on setting the desired torque gver defined by \
equation (16), equal to the expression for the TAG precession torque HIy with a sub-
script D given to } to denote the desired value. This relation is expressed as

T, =HIYp, ()

To obtain the control law, equation (17) is solved for ¥p intermsof Ts. Equation (17)
represents three equations in 2n unknowns; therefore, 2n - 3 additional equations are
needed to solve for iD' The method used to obiain the additional equations is similar to
one derived by S. C. Chu and J. Kranton.

Equation (17) is taken as a constraint, and a function to be minimized is developed to
obtain the additional equations necessary to solve for 3. The function to be minimized
is now formulated.

It is desirable to keep the gimbals as close as possible to their reference position
because with a redundant system there is no unique set of gimbal angles for a given total
angular momentum. This nonuniqueness allows gimbal drift which usually results in one
or more gimbals encountering mechanical stops or, in systems without stops, inner gim-
bal angles approaching 1:900; both conditions are to be avoided. Furthermore, minimum
rate control laws in redundant systems tend to cause gimbal drift that can result in loss
of control, For example, in a three CMG system if two parallel momentum vectors
oppose the third, loss of control about the mutual axis is experienced.

Tn the present study 2n functions are defined that give a measure of the gimbal
travel from the reference positions. The ith outer gimbal function is defined as

fi(ai) a FA(I - cos(ai - aio)) sgn (—sin (ai - ozio)) (18)

and the ith inner gimbal function is defined by

fm—i(Bi) & FB(I - cos Bi) sgn (-sin .Bi) ‘ (19)

These functions are zerc when the gimbals are in their reference positions. The outer
gimbal functions vary as 1 - cos(a»i - 0'1'0) toavalue of 2F, at o - o, = +180°,
and the inner gimbal functions vary as 1 - cos Bi to a value of ZFB at ﬁi = #180°,
The signum term causes the functions to have the sign opposite to aj - %o and 8.
Part of the function to be minimized is taken as the sum of squares of the gimbal angle
functions given by equations (18) and (19).

The second part of the function to be minimized is formed by realizing that at each
instant of time, certain gimbals are better suited to produce the desired control torque
because of lower rate requirement. This condition suggests that minimizing the sum of
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squares of command gimbal rates would cause the most favorable gimbals to be used.
This particular minimization has the effect of minimizing the gimbal power required.

With these considerations the scalar function JP to be minimized is defined as
all-T T .
Jp = 'Z‘ED + f_ (’)’llQ{ID + f_(')"}

where l.’D is the matrix of desired gimbal rates, and f(y) is the 2nby 1 matrix of
specified functions of the gimbal angles given in equations (18) and (19). The constant
matrix Q is a 2n by 2n diagonal weighting matrix which is used to weight inner gimbal
rates against the outer gimbal rates. For equal weighting Q is an identity matrix.

To solve for the command gimbal rates that will satisfy equation (17} and at the
same time minimize the function Jp, a three vector of Lagrange multipliers X is
introduced and the new function J’I; to be minimized is formed as

J; = -;-bz% + gT('r)JQ{iD + L(V)} + ET{PQ_D - %I ZG}

Since Jp is a*positive definite function, the necessary -and sufficient condition for a
*

minimum of J_ is that the partial derivatives of J_ with respect to the elements of

i’D all be zero. Omitting the details of this derivation, the result is given as

Ip = -£6) + c;z']‘i"T(rQ'11“T)'1(-1Ii Tg +TL6) | (20)

Equation (20) gives the gimbal rate commands in terms of the desired torque -T-G’ the
gimbal rate weighting matrix @, the gimbal angle coeificient matrix T, the average
angular momentum magnitude H of all TAG units, and the desired gimbal angle func-
tions £{). The matrix TQ IT'T isa 3 by 3 matrix which must be inverted in real
time. The elements of 'I‘Q_II‘T are trigonometric functions of the gimbal angles which
do not vary rapidly; therefore, the inversion frequency can be relatively low, on the order
of once per second.

Reaction-wheel control law.- The reaction-wheel control law for the TAG system is
derived in this section. The purpose of this control law is to determine reaction-wheel
commands that will produce the fine pointing control torques given by equation (8).

The reaction on the spacecraft resulting from torques applied to the reaction wheels
is given in spacecraft axes by the following expression:

Trs = BRIy - (21)
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where R is the transformation matrix given by equation (12), and the torques applied to
the reaction wheels are given in matrix form as

T
Ir= T - 'TLrll

For this study —rIlLS is the contribution of the reaction wheels to T A given earlier by
equation (15).

For the derivation, the spacecraft torque __'I_‘LS is replaced by the desired two-axis
fine pointing torque Tpp given by equation (6). The reaction-wheel torque Ty is
given the subscript D to denote the desired value, and the first rowof R 1is deleted
for compatibility. This relationship gives

Tgp= -RIyp (22)
where
~ coqcBy . . . COCH
R=| 11! non (23)
SQICBl .o sozncﬁn
and

Trp= [Tupt- - - TLDI;’T

To obtaizl the control law, equation (22) must be solved for -T-LD in terms of Tep- The
matrix R is 2 by n and direct solutions of equation (22) for ELD can be obtained only
when n =2 and R'1 exists. Since n 22 for the TAG system considered here, addi-
tional equations are needed for the case where n> 2.

The same general method that was used to derive the gimbal rate control law is used
in this case. Equation (22) is considered as an eguation of constraint, and a scalar func-
tion JR to be minimized is defined as

J

T
r =5 Tpip (24)

1]
[

Here JR is the sum of squares of the desired reaction-wheel torques and is a measure
of the power required by the reaction wheels. To determine the reaction-wheel torque
commands that will satisfy equation (22} and minimize JR, a three vector of Lagrange
multipliers A is introduced and a new function J;t to be minimized is formed as
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¥ _1.T Tfom
Jp = 3 LipIip *2 é‘lLD ¥ IFD}
As before Jg isa positive definite function so the necessary and sufficient condition for
* .
a minimum of Jg is that partial derivatives with respect to the elements of Ty all
be zero. Taking the required partial derivatives and solving for Ty gives
-1 : _
; _ ST(zsT '
Equation {25) gives pairt of the reaction-wheel commands in terms of the desired fine
pointing torque -T-FD given in equation {6) and the transformation matrix R given in
equation (23). The matrix RRT isa 2 by 2 matrix which is inverted in real time. The
elements of the matrix vary slowly and the inversion frequency need not be high. A
closed form solution for RT(RRT)"1 is given in appendix C in equation (C5) for the case
where n=3. '

Reaction-wheel desaturation is accomplished by adding the term -Kpw, to equa-
tion (25) to form the total reaction-wheel torque command as

T, = -RI(RE

52T T Ko (26)
=FD R-L

where KR is the desaturation gain and @1, is the matrix of reaction-wheel speeds. To
verify that equation (26} produces the desired fine pointing torque, it is substituted into

equation (21) to get
-1
~T(z5T

If the definition of R 1is recalled, the first term of equation (27) gives the required two-
axis torque exactly, but it also may produce a torque about the roil axis of the spacecraft
unless all inner gimbal angles are equal to zero, This torque will cause some error
about the roll axis, but the coarse pointing control law will minimize it. The second term
in eguation (26) produces the torque required to keep the reaction-wheel speeds sufficiently
low. An equal and opposite torgue is applied to the spacecrait by the gimbal rate control
law so that there is no net torque applied to the spacecraft as a result of the reaction-
wheel desaturation,

Energy storage control law.- The TAG system-energy storage control law is formu-
lated in this section. The purpose of the control law is to provide commands for the
energy -wheel motor generators to effect the required electrical power transfer and to
maintain equal energy-wheel speeds. For the control law derivation it is assumed that
the energy-wheel electrical power is equal to the mechanical power given by the relation

23



n
Py = '21 @piTh; (28)
i=

where g, is the ith wheel speed, and Ty 1is the ith motor-generator torque. The
control law must give the value of TI-Ii required to produce PT and keep the Wyg3
equal.

To derive the control law, an energy error function for the ith energy wheel is

defined in terms of the total TAG gystem kinetic energy as

E
Al 2 77
€5 AYHi - 5 (29)

where the energy ET is given by

1, T
Er =3 Ha%n%u (30)

and IHA is the energy-wheel spin moment of inertia, The control law is obtained by
letting the time derivative of the error €y be proportional to its negative as

€. = ~

i €, (31)

i
2E

e

This requirement causes each Wi to approach

with time constant k seconds.
Using Iya@p; = Ty; and fBT = P with equations (29), (30), and (31) and letting
THCi = THi represent the ith energy-wheel command gives

P, {t) E
NSO S Il e Y | 2 T
THCi wHi[ - k<2 IA%mi n)} 32)

as the ith energy-wheel torque control law. Implementation of this control law requires
continuous measurement of @hi and PT and computation of ET.

Magnetic torquer control law.- The magnetic torquer control law for TAG momentum
management is developed in this section, The result is similar to that of Levidow, The
torque I-B acting on a spacecraft due to an attached magnet of magnetic moment M is
given by the following relation:

Tp = -[B]M | @)

24



where B is the flux density of the Earth’'s magnetic field, and EEJ is the matrix equi-
valent to the vector cross-product operation, Equation (33) indicates that the torque on
the spacecraft is perpendicular to both M and B, and that torque cannot be generated
in a direction parallel to the Earth's magnetic field B. Because B depends entirely
on the location of the spacecraft in orbit, Tp can be controlled only by changing the
magnitude and/or direction of M. Since the torque generated will always be perpendicu-
lar to B, the direction of IB cannot be completely controlled. To resolve this prob-
lem, a control law that effects a net reduction of accumulated system momentum each
orbit is found by determining M({t) so that the following relation holds:

T .
Hy, = SOO ]:_E(T) M(7)dT (34)

where Hy is the momentum to be dumped in one orbit period TO' There are an infinite
number of functions M(t) that will satisfy equation (34). Optimization techniques are
used to choose the __l\g(t) that minimizes the magnet energy required. The magnitude of
M is directly related to electrical power required; therefore, an energy cost functional
JM is defined as

=3

T
=100 Ty gr
g

This problem now has the form of the isoperimetric problem of the calculus of
variations (see section 12 of ch, 2 in ref. 15) where the vector function _lyl_(t) is to be
found that minimizes the functional Jy; subject to the three functional constraints given
by equation (34). For this case the necessary condition for an extremum is that

A f1,,T .
— (MM +ABM]=0 =1,2
aMi(z M + ) ) (=129
where A is a three vector of constant Lagrange multipliers, Performing the differen-
tiation and using equation (34) gives the control law as

N -1
o = [l ¢ © Bel’ey ) ‘ 6

Equation (35) represents the cross product of the vector B(t) with the constant vector
enclosed in the braces. Implemeﬁtation of equation (35) requires a once-per-orbit com-
putation of the vector in braces and continuous real-time multiplication by [E(tzl to get
M(t). The elements of the matrix E@(t] are continuously measured by magnetometers
attached to the spacecraft. The elements of the matrix I:J_S_(Tj are determined in
advance for a complete orbit based on estimated orbit parameters and orientation of the
spacecraft. The bias momentum H, is equal to the residual bias momentum from
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previous orbits plus the estimated bias momentum for the next orbit. The vector func-
tion _l\g(t) is used as a continuous control command input to the electromagnetic control-
ler and it is updated each orbit.

SYSTEM EVALUATION

The basic TAG system and its associated control laws having been defined, it now
becomes necessary to evaluate the performance of the system in the spacecraft control
loop. In addition, it is deemed necessary to determine whether the multifunction capa-
bility of the TAG system will be detrimental to its control and energy transfer
effectiveness.

Example Mission Description

To conduct the TAG system evaluation, 2 candidate mission with stringent pointing,
stability, and moderate energy storage requirements has been selected. The spacecraft
chosen is representative of a class of low-Earth-orbit spacecraft which have been desig-
nated as shuttle-launched research and applications modules (RAMs). The particular
mission selected is an advanced solar observatory, RAM A303B, shown in figure 6. The
spacecraft and mission requirements for a growth version of the RAM A303B were gen-
erated by the RAM study. The inertias associated with the selected vehicle are given as

2 (36)

Ig = diag (40 600 406 000 406 000) kg-m
The spacecraft operates in a 279-km circular orbit at an inclination of 559 with an
orbit period of 90 minutes. The vehicle is maintained in a solar orientation with its min-
imum axis of inertia (XS) pointed toward the Sun,

The attitude control requirements, summarized in table I, for this mission are
1 arc second pointing accuracy with 0.017 arc second pointing stability about the Vg~
and zg-axis during a 45-minute observation period. The xg-axis is to be stabilized
to 5 arc seconds. Minimum momentum storage requirements for the spacecraft resulting.
from orbit disturbances and slewing requirements are estimated to be 2034 N-m-sec. No
crew disturbances are considered in these estimates since the vehicle is unmanned, except
during periods of revisit and servicing.

Using the same ground rules as established for the baseline system of the RAM
study, the TAG system must provide full control as well as 85 percent of the nominal
energy storage capability or 2.2 kW-hr with one unit failed. The high-speed wheels of
the TAG units are sized primarily from energy considerations. The momentum level is
maintained at a minimum by operating at as high a rotor speed as material and component
physical characteristies will permit.
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RAM-TAG System Description

The TAG system configuration selected for evaluation is comprised of three TAG
units with the outer gimbal axes parallel to the xs—a.xis. The system is initially in a
zero-momentum reference configuration as depicted in figure 7.

By using the results of the IPACS study, the TAG energy wheel operates at a maxi-
mum speed of 45 000 rpm and has a spin moment of inertia Iy, = 0.48 kg—mz_. ~ This
condition results in an angular momentum capacity of 2247 N-m-sec at full speed and an
energy storage capacity of 1.1 kW-hr over a speed reduction range of 50 percent.

From the power profile shown in figure 8, it has been calculated that the maximum
torgque resulting from a large power demand is 1.02 N-m per wheel at 50-percent speed.
The maximum torque applied to the vehicle during the charging cycle of the energy wheel
has been estimated at 0. 66 N-m at 50-percent speed. ‘

The reaction wheels for the TAG system exhibit the same performance character-
.istics as the reaction wheels of the RAM study baseline systems, These wheels possess
a spin moment of inertia ILA = 0.45 kg-m2 and operate at a maximum speed of 85 rpm
resulting in a momentum capacity of 4 N-m-sec.

The constants in the TAG system control laws for the example RAM spacecraft and
mission simulation are derived in appendix B, These constants are summarized herein.

The coarse pointing and fine pointing attitude gain matrices K AC and K AF and

attitude rate gain matrices Kp.- and Kpp used in equations (5) and (6) are given as

KAC ~ aiag (-8.23 x 104 - 1,13 x 10°% - 1.13 x 10%) Nom/xaq

p = diag (-3.32 x 10" - 3.32 x 107) N-m/rad
Kpe = diag (-8.09 X 10 - 9.48 % 10° - 9.48 x 10°) N-m/(rad/sec)
Kpp = diag (-5.14 x 10° - 5,14 x  10%) N-m/ (rad/sec)

respectively.

The reaction-wheel desaturation gain Kp used in equations (16) and (26) is given
as Kg = 0.308 N-m/{rad/sec). The energy-wheel time constant k used in equa-
tion (32) has the value k = 360 seconds. The constants F A and FB . in the gimbal
angle function fly) given by equations (18) and (19) are given as

F, = 0.0111 (rad/sec)/rad

Fp = 0.0222 (rad/sec)/rad
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The weighting matrix Q used in the gimbal rate control law given by equation (20) is
taken as the identity matrix for this study.

Simulation Results

In this section the results of the RAM-TAG systein computer simulation are pre-
sented. See figures 9 and 10 and appendix C for a description of the simulation. The
various control laws discussed earlier are considered separately, where possible, to
verify their operation in the system. The complete system is then considered to evaluate
its performance over one orbit period. Finally, reorientalion rate acquisitions are
discussed.

Effect of the functions £(y).- Figures 11 and 12 show the effect of the gimbal angle
functions f(y) given by equations (18) and (19) for two different sets of initial gimbal
angles. In both cases there are no gravity-gradient torques nor power-transfer torques
included. The energy wheels have equal spin rates at 25 000 rpm. The time scales
shown are 1 minute per division. In figure 11 the outer gimbals are initially 90° from
their reference position so that oy = 900, Oy = 2100, and tg = -300; the inner gimbal
angles have the values p 1= 450, 82 = -450, and S 3= 0°. The components of tofal
momentum initially are computed (based on a per wheel momentum H of 1250 N-m-sec)

as

0
RH = ( 317 ) N-m-sec
-183
After 26 minutes of simulation, the total momentum is computed as
0
RH = { 309) N-m-sec
-197
X . _ a0 _ o _ s _ oD _ _4©
by using gimbal angles of @y = -6, 0g = 1167, og = -108~, 61 = 27, Bz- -4~ and
Bg= 2°. Theoretically, the two values of RH should be the same; inaccuracy in read-
ing the final values of the gimbal angles is thought to be the cause of the difference.

Spacecraft pointing errors were monitored during this case and were found to be less
than 0.1 are second in roll and less than 0. 01 arc second in pitch and yaw.

Figure 12 shows the gimbal motion when initially oy = 00, 0y = 1760, 0g = -176°
and Bi= 0 (i=1,2,3). This orientation is considered as a "semi" worst case in
that precession control torques are difficult to produce about the Vg -axis since the three
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momenta lie close to the yg-axis. It is found in the simultations that if o, and o4
are any closer to 180° initially, then control is lost. This initial gimbal orientation
gives a total angular momentum of '

0
RH = (~1247) N-m-sec
0
After 20 minutes of simulation the gimbals had reached steady states at oy = -249,

0y = 1520, ag = -1’?60, By = 26°, 'Bz = =129, and By = -12°%,  These data give the
total momentum as

-28
RH = (-1272) N-m-sec
N
The change in total momentum is again due to inaccuracy in reading the final gimbal

angles. Spacecraft motion during this case remained stable at levels below 1.0 arc
seconds in roll and below 0. 1 arc second in pitch and yaw.

Effect of reaction-wheel speed feedback.- Figures 13 and 14 show the effect of the
reaction-wheel speed feedback in equation (26). In figure 13 the outer gimbal angles are
in their reference positions and all the inner gimbals are at 60°. There are no external
disturbance torques applied to the spaceeraft, and the energy wheels each have spin rates
of 25 000 rpm. The time scale is 1 second per division, Initial reaction-wheel speeds
of 50 rpm are used. The figure shows the reaction-wheel speed time histories and the
spacecraft angular errors for a time of approximately 17 seconds. The wheel-speed time
to damp to half-amplitude is seen to be approximately 1 second. No detectable pointing
error is caused in pitch (8) and yaw (/) and approximately 0.4 arc second error is caused
in roll (¢). The roll-angle errors that appear at approximately 10 and 15 seconds are
due to the loss of roll control every 5 seconds during the 460 msee control computation.
These errors are far below the allowable 5 arc seconds.

Figure 14 shows the results of having Wi = 100 rpm and Wpg =Wy = 0 rpm
initially. Here all gimbals are in their reference positions. The energy wheels each
have spin rates of 25 000 rpm. The time scale is 1 second per division. In this case
all the excess reaction-wheel momentum is along the spacecraft ys—axis. During the
desaturation a pointing error of approximately 0. 005 arc second about the yg-axis
occurs. Outer gimbals 2 and 3 are seen to rotate about 0. 1° to compensate for the change
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in angular momentum. Similar cases were run for the other two wheels and the results
were comparable to this case,

Effect of energy-wheel speed control.- Figure 15 shows the effect of the energy-
wheel speed control law given by equation (32). In this case Wiy = 25 000 rpm and
Wi = Wy3 = 35 000 rpm. All gimbals are in their reference positions initially, and
there are no gravity-gradient nor power-transfer torques acting on the spacecraft. The
time scale is 1 minute per division. The simulation is run for 12 to 13 minutes. The
wheel speeds equalize in approximately 6 minutes (the time constant k). The outer gim-
bals 2 and 3 rotate to compensate for the changing momentum to ag = 130° and
g = -130°,

Effect of impulsive torque distrubances.- Figure 16 shows the effect of an impulsive
torque of 2 N-m-sec applied about the spacecraft ys—axis. The 2 N-m-sec level was
chosen to cause the reaction-wheel torque motors to saturate. Here all gimbals are in
their reference positions initially. The energy wheels have spin rates of 25 000 rpm and
there are no gravity-gradient nor power-transfer torques applied. A ys~axis pointing
error of 0, 18 arc second is caused, The ensuing motion shows that command torque
limiting (set at 4 N-m per axis) occurred during the first 0.7 second of motion, This
value is determined by noting the initial straight-line segments in the reaction-wheels'
time histories. The reaction-wheel speeds returned to zero because of the desaturation
scheme. The slight offset is due to computational inaccuracies. The same impulse
magnitude was applied ahout the Zg -axis and comparable response was obtained.

Effect of constant torque disturbance.- Figure 17 shows the effect of a2 constant
torque applied about the roll axis of the spacecraft. The magnitude of the disturbance
torque is 2.74 N-m equal to the maximum power transfer torque of 2 N-m plus the max-
imum gravity-gradient torque of 0.74 N-m. The gimbals are in the reference positions
and the energy wheels have spin rates of 25 000 rpm. The time scale in the figure is
1 second per division. The theoretical pointing error caused by the 2.74 N-m disturb-
ance is computed to be 6.72 arc seconds. The simulation gives approximately this value.
The roll damping is seen to be close to the desired 0.'7 value. The inner gimbals are
used to control the spacecraft in this case and their time histories are shown in the fig-
ure. In this case the pitch and yaw pointing errors remained below 0. 005 arc second.

Figure 18 shows the effect of the constant 2.74 N-m torque applied about the space~
cralt ys-axis. All other conditions are the same as in the previous case. The theo-
retical pointing error caused by the 2.'74 N-m torque is 0.017 arc second, The simula-
tion pointing error is close to this value as is seen in the figure. The reaction-wheels’
responses are shown on the right-hand side of the figure, and it is seen that reaction-
wheel speeds level off as desired. It is noted that this maximum disturbance torque
causes a maximum speed of 10 rpm where the units are designed for 85 rpm. Time
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histories for outer gimbals 2 and 3 are shown on the left-hand side of the figure, and it is
seen that these gimbals control the reaction-wheel speeds while the reaction wheels con-
trol the spacecraft. This case was also run for the zs—axis and the results were com-
parable with those of this case.

Figure 19 shows the effect of the 2. 74 N-m torque applied about the spacecraft
ys—axis with the fine pointing control law deactivated to show the coarse pointing con-
trol response. The conditions of the previous case are used. The theoretical pointing
error caused by this torque with only the coarse pointing control law is 0.9 arc second.
The simulation verifies this value and the desired damping of 0.7. Reaction-wheel time
histories are not shown since there is no reaction-wheel response for this case. The
outer gimbal responses are similar to the previous case as is expected. The 2,74 N-m
torque was applied about the spacecraft Zg -axis with no fine pointing and the results
were similar to the results of this case,

Effect of initial pointing errors.- Figure 20 shows the response of the spacecrait
to a 10~are-second initial roll position error. The gimbal angles are in the reference
positions initially and each energy-wheel spin rate is at 25 000 rpm. The pitch and yaw
pointing errors and the inner gimbal anglgs are also shown in the figure. The time scale
is 1 second per division. The roll response is close to the desired response having a
natural frequency of 0.229 Hz and a damping ratio of 0.7. There does not appear to be
any cross coupling to the pitch or yaw axes. The inner gimbal motion required to null
the error is very small as expected.

Figure 21 shows the response of the spacecraft to a 1-arc-second initial pitch axis
pointing error. The systetn conditions are the same as in the previous case. Here the
reaction-wheel speed responses are shown together with the responses for the outer gim-
bals 2 and 3. The reaction wheels null the pointing error and the ocuter gimbals null the
reaction-wheel speeds so that after approximatély b seconds, the system is in steady
state with the initial error nulled. Torque limiting at 4 N-m occurs as noted by the
initial straight-line segments in the figure. A similar case was simulated for the
zs-axis and the results were comparable.

Effect of gravity-gradient disturbance torques.- Figure 22 shows the results of the
simulation of the RAM-TAG system in the baseline orbit. The spaéecraft orientation is
solar inertial with the roll axis out of the orbit plane at an angle of 45°, This is a worst
case in the senge that the bias gravity-gradient torque is maximum in this orientation,
Initially, the inner and outer gimbals are in their reference orientations, the energy-
wheel speeds are at 25 000 rpm and charge torques of 0.45 N-m per wheel are applied
to them, The reaction wheels are at zero speed and there are no initial spacecraft
pointing errors. The time scale is 5 minutes per division.
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Figure 22(a) shows the spacecraft pointing errors during the simulation. The
apparent spikes on the Xg-axis time history are roll-angle errors that occurred every
5 seconds caused by the 460-msec period of control computation during which the roll
axis is uncontrolled. The magnitude of these errors is far below the allowable maximum
of +5 arc seconds. The pitch and yaw pointing errors follow the gravity torques as
expected and the maximum pointing errors are 0.005 arc second and 0.0035 arc second,
respectively.

Figure 22(b) shows the outer gimbal angle time histories. ‘These data were sampled
every 5 minutes because of the lack of additional strip chart recorders. The sampling
frequency was adequate because of the relatively slow gimbal motion. It is noted that
outer gimbal 1 remains relatively close to its reference position whereas gimbals 2 and 3
move away from their reference positions. This motion is caused by the bias gravity-
oradient torque. The magnetic torquer, which is not included in this simulation, would
minimize this motion. It is pointed out that the system, as sized here, has more angular
momentum than is required for control only. Including the energy storage feature in the
attitude control system generally will result in a control system with excess angular
momentum. In a conventional CMG system the gravity -gradient bias torque could cause
saturation in one orbit, whereas only 40° of gimbal travel occurs here.

Figure 22(c) shows the inner gimbal time histories. Note that the vertical scale is
different from the outer gimbal time histories. Theoretically, there should be no inner
gimbal motion. It is felt that this motion was due to computational inaccuracies. Finally,
the bottom curve in figure 22(c) is representative of the three energy-wheel speed varia-
tions during the orbit., Small changes due to the peak power loads do not show up in these
data but the peak loads were simulated. No discernible pointing errors due to these loads
were cbserved,

Effect of a reorientation rate acquisition command.- Figure 23 shows the results of
the simulation of a spacecraft reorientation rate acquisition. There are no external
torques acting on the vehicle. The TAG energy wheels are at 25 000 rpm, and the gim-
bals are 1initially in their reference positions., Shown in the figure are spacecraft pitch
angle 6, pitch rate q, and the three outer gimbal angles. The time scale is 1 minute
per division. A pitch rate of 6%/min is commanded at t = 0, and it is acquired in
approximately 4 minutes. The initial angular acceleration of the spacecraft is approxi-
mately 60/ minz, the desired value, The initial outer gimbal rates for units two and
three are approximately 0.319/sec which is the theoretical value based on the angular

momentum magnitudes, gimbal angles, and desired torque. Gimbals 2 and 3 reach
steady -state angles of approximately 142° and -1410, respectively, as determined from
the figure. These angles give a total calculated angular momentum of
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o
RH = {-711> N-m-sec
0

The angular momentumn of the spacecraft based on the angular rate of 60/ min is ecalcu-
lated to be

0
ES ={(709, N-m-sec
0

Theoretically, RH should equal 'ES in this case; inaccuracy in reading the final gim-
bal angles is thought to be the cause of the difference.

A yaw-rate acquisition was considered and the simulated motion checked closely
with predicted motion.

In these cases additional computation equipment was not available to simulate the
spacecraft rate vector — TAG system momentum vector cross-product term I:QJRE that
appears in equation (10). In these cases this term would have been equal to zero anyway
because £ and RH were colinear throughout the maneuvers.

CONCLUDING REMARKS

A conceptual design for a double-gimbal reaction-wheel—energy-wheel device,
which has three-axis attitude control torque and electrical energy storage capability, is
given. A mathematical model for the three-axis gyroscope (TAG) is developed, and a
system comprised of multiple TAG units with a digital flight computer is proposed for
the attitude control and energy storage system of a spacecraft. Algorithms that deter-
mine torques required for spacecraft fine pointing, coarse pointing, and reorientation are
formulated. TAG gimbal rate laws, reaction-wheel torque laws, and energy-wheel torque
laws are derived that produce the required control torques while minimizing functions of
TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed dif-
ferences. A magnetic torquer is proposed for TAG system desaturation, and a control -
law is derived that minimizes a function of the magnetic energy required while providing
a net dump of angular momentum each orbit.

To evaluate the design concept, a three-TAG system is sized for a proposed
shuttle-launched research and applications module (RAM); and a computer simulation of
the TAG system and spacecraft dynamics is developed and used. Various modes of
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operation, including spacecraft fine pointing in the presence of time-varying gravity-
gradient disturbance torques, are considered. Time-history plots of critical variables
are presented and discussed for the cases studied. ' '

The results of the analysis and simulation indicate the following:

1. Combined three-axis attitude control and electrical energy storage using the
TAG concept is theoretically feasible.

9. In the derivation of the TAG gimbal rate control law, minimizing functions of
gimbal angles and rates causes the gimbals to favor continuously their reference orien-
tation and thereby eliminate the gimbal drift anomaly that often leads to attitude control
system instabilities.

3. Including reaction-wheel speeds in the gimbal rate control law and the reaction-
wheel control law provides continuous automatic reaction-wheel desaturation without
causing any net torque to be applied to the spacecraft.

4. The digital gimbal rate control law which is based on minimization of functions
of the reaction-wheel speeds, gimbal angles, and gimbal rates with constrained output
torque requiremenis gives perfect command torque — output torque matching, maintains
the gimbals near their reference orientation, and continuously desaturates the reaction
wheels. A gain matrix update frequency of once every 5 seconds and a gimbal rate com-
mand update frequency of once every 80 msec are adequate.

5. Typically, the energy storage requirements cause the angular momentum level
of the TAG units to be higher than necessary for control only (by a factor of three at
maximum wheel speed for the example). This condition has the advantage of giving the
control system more gravity-gradient bias torque capability and maneuver rate capability
but has the disadvantage of requiring more precise gimbal rate control.

6. For the example mission studied, the pointing errors caused by gravity -gradient
torques are controlled below the required level of 0.017 arc second. Uncontrolled
pointing errors reach estimated maximum values of 330 arc seconds in one orbit.

7. Fabrication and testing of a laboratory prototype would be required for complete
determination of the feasibility of the TAG concept.

8. Hardware anomalies such as gimbal torque motor hysteresis break-out torque,
gimbal tachometer and resclver resolution, spacecraft attitude sensor deadbands,
reaction-wheel tachometer resolution, and signal noise throughout the control system
will 1imit the ultimate pointing capability of the TAG system. Final hardware design
studies should consider these nonlinearities.

9. Control system stability was not considered in this study since the actuators
and sensors were considered as perfect. Final design studies including actuator and
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sensor dynamics should consider control system stability because of the high loop gains
required for fine pointing. :

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., March 1, 1974,
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APPENDIX A
TORQUE EQUATION FOR THE TAG UNIT

It is assumed that the TAG unit, shown schematically in figures 1, 2, and 3, may be
represented analytically by a combination of four rigid components: the two axisymmetric
wheels, the inner gimbal, and the outer gimbal. A rotating spacecraft axis system is
used as reference for the TAG elements. It is also assumed that for each component,
geometric axes are principal axes, and the wheels' spin axis is coincident with the inner
gimbal yy-axis as shown in figure 3.

The torque acting on a spacecraft due to forced angular motion of the TAG com-
ponents is equal to the negative of the time derivative of the TAG unit angular momentum.
The TAG momentum is found by computing the momentum of the four components sepa-
rately, transforming each to the spacecraft axes, and then adding them to get the total.

The angular momentum of the outer gimbal taken separately is given in outer gim-
bal coordinates by

B - 1ol + T8/s0) a1

where the outer gimbal inertia matrix is given by

I0 = diag (IOX IOy IOz)

The outer gimbal angular velocity, relative to the spacecraft, is given in terms of the
relative outer gimbal rate o as

wg=le o off

The matrix Tg /S is the inverse of the oufer gimbal to spacecraft axes orthogonal trans-
formation, and is given as

1 0 0
Tg/s = [0 ca sa

0 -8c co

The spacecraft angular velocity 2 is given in terms of the body rates as

e=|p q r_lT
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APPENDIX A — Continued

The outer gimbal angular momentum given by equation (A1) may be expressed in space-
craft coordinates by using the transformation Tq /8 as

s
HY = TossH0 = To/s020 + To/sloTo/s® (a2).

The angular momentum of the inner gimbal, taken separately; is given in inner gim-
bal coordinates by

I_+( I, T '
i Hp = Yfop + TI/Sg) (A3)

where the inner gimbal inertia matrix is given by
L = diag (le IIy IIz)

The angula,f velocity of the inner gimbal with respect to the spacecraft is given in terms
of the relative gimbal rates & and £ as

g%=L&cB -asp BJT

The matrix T%‘/S is the inverse of the inner gimbal to spacecraft axes orthogonal trans-
formation, and is given as

el casf sasf
TI'I}S = |-573 cacB‘ secpB

0 -s50 co

The inner gimbal angular momentum given by equation (A3) may be expressed in space-
eraft coordinates by using the transformation TI/S as

S _ I _ 1 T '
The angular momentum of the two wheels is given in inner gimbal coordinates by

I _ I I T I I T o\
EW = IL(&’L + Wyt TI/SE) + IH(QH + Wy + TUSﬁj (A5)

where the first group of terms represents the angular momentum of the reaction wheel,

and the second group represents the momentum of the energy wheel. The inertia matrix
for the reaction wheel is given by
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APPENDIX A — Continued

IL=diag(ILT I A ILT)

and the angular velocity of the reaction wheel with respect to the inner gimbal is given by

o=[0 oy o7

The inertia matrix for the energy wheel is given by

I = diag (IHT Lia IHT)

and the angular velocity of the energy wheel with respect to the inner gimbal is given by

g%i=|_0 @y (i,T

The other terms in equation (A5) have been defined previously. The angular momentum
of the two wheels given by equation (A5) may be expressed in spacecraft coordinates by
using the transformation Ty /g a8

HS - TI/S—\I?V TI/S L(wL + wI + TI/S—-) + TI/SI (w%{ + wI + TI/S--) (A6)

The total angular momentum of the TAG unit, expressed in spacecraft coordinates,
is found by combining equations (A2), (Ad), and (A6) as

S .8 .8 .8
Hp = Hy + By + By

N O T 1 T
= Tosslo¥o * ToysloToss? + Tystwr + TyghTys®
T 1. .T I T
+ T]’,/SIL(QL + Wy + TI/S@) + TI/SIH(EH + 9% + TI/SE) (AT)

The output torque equation for the TAG unit is obtained by taking the negative time
derivative of I_{_% in the moving spacecraft coordinate system as

S

dd
. =T ] S
Ty =- dat = [—E‘)‘JHT (A8)

where the vector IU represents the torque on the spacecrait. The first term on the
right-hand side represents the rate of change of TAG angular momentum with respect to
the spacecraft, and the second term represents the rate of change of TAG angular momen-
tum due to the angular velocity of the spacecraft. The first term of equation (A8) involves
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APPENDIX A - Concluded

the time derivatives of products of the transformation matrices, the gimbal and wheel
angular velocities, and the spacecraft angular velocity. The second term in equation (A8)

represents the vector cross product of the spacecraft angular velocity with the TAG angu-
lar momentum." |
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APPENDIX B
RAM-TAG SYSTEM CONSTANTS

In this appendix the constants in the three TAG system contrel laws are derived for
the example RAM spacecraft and mission. These parameters are used in the simulation
described in appendix C.

The elements of the coarse pointing and fine pointing attitude gain matrices K AC
and K,p used in equations (5) and (6) are determined by dividing an assumed maximum
disturbance torque per axis by the pointing stability requirement. The disturbance torque
for Yg- and zs-axis is taken as the maximum gravity-gradient torque plus the maximum
power generation torque. For the xS-a.xis, _only the power torque is used.

The gravity-gradient torque is computed from equations (D7), (D8), and (D9) of
appendix D. For the example spacecrait Tp, = 0 and the maximum torque along the
Yg- and zg-axis is given as

Tp max = '32‘ “'%(IT B Ix)

With wg = 3—3 rad/min, Iy =406 000 kg-m2, and I, = 40 600 kg-m?2,

TD,max =0.74 N-m

The maximum power generation torque applied to the spacecraft occurs with the
three TAG momentum vectors alined at the minimum allowable wheel speed and at the
maximum power output. The minimum wheel speed for the example system is 22 500 rpm
and the maximum generator power is 4820 W. This vector alinement condition is not
used because the attitude control system cannot function in this orientation. An arbitrary
condition is selected where each TAG momentum vector is approximately 13° away from,
and equally spaced around, the total momentum vector., These conditions give a power
torque of approximately 2.0 N-m.,

The Vg~ and zS—-a.xis torque for the attitude gain calculation is taken as 2.74 N-m,
and for the xs-a.xis, 2.0 N-m. From table I, the yg~ and zS-a.xis fine pointing stability
level is +0.017 arc second or 8.24 x 1078 rad, Dividing this value into the YgZg torque
of 2.74 N-m gives the fine pointing attitude gains as

K -3.32 x 107 N-m/rad

AFy

Ky p, = -3.32 x 10 N-m/rad

N
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APPENDIX B — Continued

where the minus sign is requiréd to give a stable system. The Yg- and zS—axis coarse
pointing stability requirement is +0.5 arc second or 2.43 X 10-6 rad. Dividing the

YgiZg torque of 2.74 N-m by 2.43 x 10™° rad gives

Kpgy.= -1- 13 X 10 N-m/rad

Ky, = -1.18 x 10° N-m/rad

The xs—axis coarse pointing stability requirements is +5 arc seconds or 2,43 x 10'5 rad,
Dividing the xg-axis torque of 2.0 N-m by 2.43 x 10'5 rad gives

Ky oy = -8-23 x 10% Nom/rad

The fine and coarse pointing angular rate gains are calculated to give the controlled
motion a theoretical second-order damping of 0.7, Recalling the formula for the rate
gain in terms of damping ratic p, moment of inertia I’I" and attitude gain K, gives

Kg = -20 K, I

The fine pointing rate gains for the yg- and zg-axis are computed with
Iy = 4.06 x 10° kg-m® as :

K -5. 14 x 106 N-m/(rad/sec)

n

RFy
Kppy = -3-14 x 108 N-m/(rad/sec)

The coarse pointing rate gain for the xs-axis is computed with Iy = 4.06 x 104 kg-—m2 as

L}

K -8.00 x 10% N-m/ (rad/sec)

RCx

The coarse pointing rate gains. for the Yg- and zg-axis are computed as

K -9.48 x 10° N-m/(rad/sec)

RCy

ROg = -9-48 X 10° N/m/ (rad/sec)

K

The TAG reaction-wheel desaturation gain KR in equation (26) is taken so that the
2.74 N-m distiurbance torgue causes the maximum reaction-wheel speed, given previously
as 85 rpm. The gain is computed by dividing the disturbance torque by the wheel speed
1o get '
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APPENDIX B — Concluded

Kg = 0.308 N-m/{rad/sec)

The energy-wheel parameter k given in equation (32) is arbitrarily selected to
give an energy equalization time constant of 6 minutes. The parameter k is thus taken
to be k = 360 seconds. The value of k is not critical and should be adjusted to give

the best responses in practice.

The constants F A and FB in the gimbal angle function f(l’) given by equa-
tions (18) and (19} are taken to give 1°/sec gimbal rate commands for cuter gimbal
angles of 90° and for inner gimbal angles of 45°, This requirement gives

F, = 0.0111 (rad/sec)/rad

Fp = 0.0222 (rad/sec)/rad
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APPENDIX C
RAM-TAG SIMULATION DESCRIPTION

Simulated Systems

In this appendix a computer simulation for the RAM-TAG system is described. The
simulated systems considered are the RAM spacecraft dyhamics and TAG attitude control
and power storage system functions during observational periods. The simulation is
based on the following simplifying assumptions:

(1) The spacecraft and all TAG system structural componenis are rigid bodies and
the TAG gimbals are assumed to be weightless,

(2) During fine pointing, small-angle approximations are used to describe the space-
craft motion, and the spacecraft angular rates are low enocugh to neglect the term [_Q]Rl—l_
in the TAG torque equation.

(3) Gravity-gradient and power-transfer torques are the only disturbances applied
to the spacecraft.

{4) TAG gimbal drive servos are ideal‘in that actual gimbal rates are equal to com-
manded rates.

(5) Spacecraft angular rate and position sensors are a broxiinated by constant
. P
gains.

Simulation System

The simulation system is comprised of Electronic Associates, Inc. (EAI) 680 analog
computer, an EAT 640 digital computer, an EAI 693 interface system, and various display
equipment. The analog computer is used to simulate both the spacecraft dynamics and '
the TAG system dynamics and to carry out certain algebraic calculations. The digital
computer is used to sitnulate the attitude control and power storage functions of the
spacecraft flight computer and to perform additional calculations associated with the
simulation. An overall block diagram of the simulation is given in figure 8. The equa-
tions in this diagram and the division of computational tasks are discussed.

Analog Computations

The simulation block diagram given in figure 9 shows the equations that are imple-
mented on the analog computer. All computations are done in real time. Time is gen-
erated explicitly by integrating a constant so that 10 000 seconds of simulation is possible.
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APPENDIX C — Continued

The spacecraft equations of motion take on a particularly simple form for simulation
of the fine pointing mode. These equations are given by

Q= Igl(TR + Tp + Tp) (1)

where g is the spacecraft total angular acceleration vector defined in terms of body -
axis componenis as

2= 4 |

The mass moment of inertia matrix IS is given by equation (36). The three torques Tns
Tps and ED are the TAG rotor acceleration reaction torque, the TAG precession reaction
torque, and the external disturbance torque, respectively. The TAG rotor acceleration
reaction torque is computed by adding equations (26) and (32) to give

Tg = -R(Ty, + Ty) (c2)

The TAG precession reaction torque -T—P is computed according to equation (14} by
neglecting the [g:] RH term. The external disturbance torque Tp, is computed by the
digital computer and is covered later.

The spacecraft body rates are computed by integrating equation (C1). The space-
craft angular displacements are determined by integrating the body rates.

The energy-wheel and reaction-wheel spin rate equations of motion have the follow-

ing form:
. 1
e =2 (C3)
~H =H
Ina
—d’L = I_L -TwL (C4)

The rotor torques -T-H and T; are computed according to equations (32} and (26) where
the total energy ET is computed by using equation (30) and the average angular momen-

tum per TAG unit H is computed by using equation (13). The rotor rates are computed

by integrating equations (C3) and (C4).

The TAG gimbal angles are computed by integrating the command gimbal rates com-=
puted digitally from equation (20). Trigonometric function generators are used to com-
pute the sine and cosine of each gimbal angle.
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APPENDIX C — Continued

The spacecraft coarse pointing and fine pointing command control torques are com-
puted by using equations (5) and (6). Limiters are used in the fine pointing torque calcu-
lations to limit the command torque to 4 N-m (the baseline RAM reaction-wheel torque
limits).

‘The spacecraft electrical power profile is calculated according to the relation given
by

where Pp = -3400 W and Pc(t) is either zero or 6900 W when the spacecraft is in
sunlight. The term PDP(t) is zero normally and -450 W during peak power loads.

Digital Calculations

The simulation block diagram given in figure 9 summarizes the calculations that are
implemented on the digital computer. Time critical calculations are updated as quickly
as possible; in the present case, about every 80 msec. Non-time-critical calcuiations
are performed periodically by interrupting the fast loop every 5 seconds. These calcu-
lations take approximately 460 msec. The 5-second period was not eritical and could be
shortened to 1 second or lengthened to 10 seconds without affecting the simulation resulis.

Figure 9 shows the -calculations that are repeated every 5 seconds, The gravity- -
gradient disturbance torque vector Ty, derived in appendix D and given by equations (D7),
(D8), and (D9), is computed by the digital computer. Time t generated by the analog
computer is input to these equations. The constanis required include the spacecraft
piteh, yaw, and roll moments of inertia, The orbit frequency wg is taken as 1 cycle per
00 minutes. The initial Euler angles ¢ and Y are defined in figure 10 and are con-
stants for each simulation run. '

Several coefficient and transformation matrices are updated every 5 seconds. The
elements of the matrix R given by equation (12) with n = 3 are computed in terms of
the sines and cosines of the gimbal angles computed by the analog computer., The
matrix R (the truncated version of R), given by equation (23}, is used to form the

L AasTEsTYL o . “=T . .
matrix G2 R (RR ) in equation (26). The inverse of RR™ 1is determined analyti-
cally so that

1

ca3cﬁ 3RR22 - s3a3cB3RR12 sascBSRRll - ca3cBSRR12
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where

3

RR11 =Zczaiczﬁi
1
3

RR12 =aniscxic2)31
1
3

RR22 = ZSzaiczﬁi
1

and the determinant of ﬁﬁT is given by
D = RR,,RR,, - RR?
1177722 12

The elements of the 3 by 6 matrix T" are computed according to equation (11) with
n =3, The matrix C2& Q'1I"I'(I"Q'Il."'r)"1 in equation (20) (with Q = I} is computed,
where the inverse of I‘I‘T is ealculated by using a standard matrix algebra subroutine,
The vector £(y) given by equations (18) and (19) with n = 3 is computed in terms
of the sines and cosines of the gimbal angles with Fp = 0.0111 (rad/sec)/rad,
Fp =0.0222 (rad/sec)/rad, a;q= 0% ayy=120°, and agqy = -120°

The time-critical digital calculations involve the gimbal rate commands. The
TAG gimbal rate control law given by equation (20) is updated at a rate of about once
every 80 msec, and the desired gimbal rate torque T., is given by equation (16) with
m = 0 for the fine pointing simulation. The computation of the new 7"—D involves the
coefficient matrices R, C,and TI' as well as the vector f and analog variables H,

Tepr @y, 30d Ty

Interface Operations

The hybrid computer interface system transfers data from the analog computer to
the digital computer and transfers (and operates on) data from the digital computer to the
analog computer. Figure 9 summarizes the interface operations performed.

Twenty -three channels of analog data are converted to digital words every cycle
through the computation loop. This conversion means that the variables Ty t, H,
@1, Tep, and the sines and cosines of the gimbal angles are updated in the digital com-
puter approximately every 80 msec.

46



APPENDIX C — Concluded.

Six digital to analog multipliers (DAMs) transfer new values of 7.-’-D to the analog
computer at the 80 msec rate. Three DAMs update Ty, every cycle. Six DAMs update
G every cycle and multiply the fine pointing command  Tgp continuously. Nine DAMs
update -R every cycle and form the product R(_’I_'L + Ty continuously. Fifteen digi-
tally controlled attenuators (DCAs) update T every cycle and form the product I‘T_;ZD
continuously.
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APPENDIX D
SPACECRAFT GRAVITY~-GRADIENT TORQUE EQUATION

This appendix formulates the gravity-gradient torque acting on an axisymmetric
spacecraft in a circular orbit about a spherical planet in ferms of time and inertial Euler
angles. This formulation was needed for spacecraft control system simulation and was
not found in the literature,

The gravitational torque acting on a spacecraft in circular orbit about a planet is
given in reference 16 as

Ty, = 3w3(F x Ig7) (D1)

where Yo is the mean orbital angular velocity, r is a unit vector in the direction of
the line joining the mass center of the planet and the spacecraft, and IS is the inertia
matrix for the spacecraft. The method used to express ED about body axes is to deter-
mine 7 in body coordinates and then expand equation {D1) in terms of r and L;. Fig-
ure 10 shows the coordinate systems used. An inertial axis system (XI,YI,ZI) is
assumed such that the origin is at the mass center of the attracting planet. The XI—axis
passes through the point of perigee and the Y-axis lies in the orbit plane in such a posi-
tion that the ZI—axis is normal to the orbit plane in the direction of the orbit angular
momenfum vector. An orbit axis system (XO,YO,ZO} is assumed s0 that its origin
moves with the spacecraft center of mass with the XO-,axis in the direction of the line
from the origin of the (XI,YI,ZI) system to the origin of the (Xo ,Yo,Zo) system. The
Z(-axis is parallel to the Zy-axis, and the Y-axis completes the right-handed set.

At time equal to zero the (XO,YO,ZO) system is alined with the (XI,YI,ZI) system,

The angle between the Zg-axis and the Xj-axis is wpt. The spacecraft body-axis
system (xs,ys -ZS) has its origin at the spacecraft center of mass and is related to the
inertial axis system by the conventional Euler angles as shown in figure 10, The unit
vector T in orbit coordinates has the following form:

=t o of (D2)

This vector is expressed in inertial coordinates by the following transformation:

cwot -swot 0|1 cwqt
B = swpt cwqt 01407 = ¢ swyt (D3)
0 0 1 U) 0
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APPENDIX D — Concluded

The inertial axes to spacecraft body-axis transformation is given by

cyred | syrcd -84
TI,/B = |~scop + cpshso cyed +sPsfsep  clsd (D4)
sys¢p + csd cg sysfco - cysgp el co

Then the unit vector T may be expressed in the body-axis system as

I;xS cwotcwce + swotsyl/ce
™= TI/Bf'R ={Tys) ™ cwot(m,t/sﬂsgb - subccp) + swot(cyDccp + swses¢>) (D5)
L cwot(swscp + cz,l/seccj)) + swot(sr,(/secqb - cz‘{/sqb)

The gravity-gradient torques about the principal spacecraft body axes may now be calcu-
lated by using equations (D1) and (D5) as

{
R rySrzS\Iz - %)
Ip = 3wg rxSrzS(E( - Iz) (D)

r:{SryS(Iy - g;)
For the present study it is assumed that the spacecraft is axisymmetric so that
L, = I, = Ip. Making these substitutions into equation (D6) shows that there is no gravity
torque about the axis of symmetry; that is,

The = 0 : ‘ (D7)

Dx
It is also assumed for computational convenience that the roll angle ¢ of the spacecraft
is maintained near zero so that cos ¢ =1 and sin ¢ = 0. Making these substitutions
into equation (D6), using equation (D5), and % =1 =Ip gives

TDy ==——3— w(z-)(IT - IX)(SZB + 528(:2(0.:0 - I,U)) (D8)
Tp, = %C%(IT - Ix)cesz(wot - ) (D9)

Equations (D7), (D8), and (D9) may be used in a real-time simulation to provide 2 reason-
able approximation to the gravity-gradient torques acting on an axisymmetric spacecraft
in a circular orbit about a spherical planet.
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TABLE I.- EXAMPLE A303B RAM EXPERIMENT SUPPORT REQUIREMENTS

Pointing:
Orientation . . . . . . . . . L . L e e e e e e e e e e e e e e e e Solar
Accuracy:
Acquisition (no support from experiment) ., ... .. ... ... ... . +£30 arc sec

Experiment pointing (supported by experiment-supplied
aspect error):
Pitchand yaw . . . . . . . . i 0 i e e s i e e e e s e e e e s +1 are sec
Roll . . . . L e e e e e e e e e e e e e s +95 arc sec
Stability (supported by experiment-
supplied aspect error):

Pitchandyaw . . ... ... ... +0,5 arc sec {basic), £0.017 arc sec fine pointing
Roll . o L e e e e e e e e e e e e e e e e e e e e +5 arc sec
Observation time . . . . . . . . c . i e e e e e e e e e e e e e e 0.75 hr
Slew rate, acceleration . . . . . . . . . i ittt e e e e e 6°/min, 6°/min2
Orbit:
Altitude . . . L L e e e e e e e e e e e e e e e e e e e e e 279 km
INCHNAtION .« . . . .t e e e e e e e e e e e e e e e e e e e e e e e 559
Period . . . . . L e e e e e e e e e e e e e e e e e e 90 min
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Reaction-wheel section view
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pivot axis

Quter gimbal

Inner gimbal

[ — Inner gimbal pivot axis

\—Energy-wheel section view

Figure 1. - TAG unit general arrangement.
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Figure 2, - TAG outer gimbal axis system.
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Quter gimbal pivot axis

Inner gimbal

Inner gimbal
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Spacecraft
y-axis

Reaction-wheel and
YI energy-wheel spin axis

Figure 3. - TAG inner gimbal axis system.
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Figure 4. - Spacecraft attitude control and power system block diagram.
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Figure 5. - Spacecraft-TAG axes showing the ith TAG gimbal angles, gimbal rates, and
angular momentum.
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Figure 6.- Example free-flying RAM general arrangement.
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Figure 7. - RAM-TAG reference gimbal orientations.
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Figure 8. - Example power profile for simultaneous operation of experimenfs'.
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Figure 9, - RAM-TAG system simulation block diagram.
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Figure 10, - Orientation of coordinate axes. Order of Euler rotations 1s Y, 6, and
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Figure 11. - Gimbal angle minimization case with a = 90°, oy = 210°, ag = -30°, B =45°, B, = -45°,
BB =09, WHi = 25 000 rpm, and wy = 0 initially, and without gravity-gradient or power-transfer torques.
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Figure 12. - Gimbal angle minimization case with a; = 0%, ay = 176°, a, =-176°, 8= 0%, wyg =25 000 rpm,
cand wyg, = 0 initially, and without gravity-gradient or power-transter. torques.
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Figure 13. - Reaction-wheel desaturation case with a; = 0°, ay = 120°, a5 = -120°, g, =60°, wy, =50 rpm,
and Wy T 25 000 rpm initially, and without gravity-gradient or power-transfer torques.
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Figure 14. - Reaction-wheel desaturation case with wyyg = 100 rpm, Wig = Wrg = 0,
a = 0% ay= 120°, @ = -120°, B; = 0°, and wg; = 25 000 rpm initially, and
without gravity-gradient or power-transfer torques,
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Figure 15.- Energy-wheel speed equalization case with Wiy = 25 000 rpm,
WHp = Wiy = 35 000 rpm, wy;=0, Q= 0, 0y = 120°, g = -120°,
and B; = 0° initially, and without gravity-gradient or power-transfer
torques.
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initially, and without gravity-gradient or power-transfer torques. .



68

10 !
[z } ]
¢, Se¢ 0
‘@ } [ . L
-0l f
-] P—I sec
e T T
—t . —
By, deg  Op——ed LT —— |
g F e i -
i L P ] Ll
————; I ‘ T ! ] ‘t ! i
-2.5 Lo T ! N R
2.5 N T ; 7
L
,Ifj —_— =T
32: deg 0 % w |
-+ T
sl T ] T T
2.5 : i
I ) *7
JEE.
Bs, deg 0 ;—~ S S e
? .- !
W]

Figure 17.- Spacecraft Xg (roli) axis 2.74 N-m constant disturbance case with
ay = 0% ag=120° ag=-120°, 8. =0° w .=0, and wig; = 25 000 rpm
initially, and without gravity-gradient or power-transfer torques.



0.025

9, 8e¢ 0

-0,025

122,577 TT T T

i T
B B A S
f _| _ ﬁ,q;_;_ L

117.5° ._4 —» |1 sec

-117.5 ‘_" H Ai 7|7 iJ 5}
R o
- _”J o

a4, deg -120

-122.5

Figure 18, - Spacecraft Vg (pitch) axis 2,74 N-m constant disturbance case with

o = 0%, &y =120°, o5 =-120%, - 8; = 0°, wy; =25000 rpm,and wp; =0

25

initially, and without gravity-gradient or poweerra.nsfeI! torgques.

11 N
L R N
AN ol
H J_ _7‘|4‘ ‘
e wy,q> TP 0 Ll _
! i b
i A e I I I AR

& | i

PO T
25 1 T ; H !
T =
I 1
IR - }n [
Wpge TPM ORI
. P -
i 1 i
T
P s

->] l<—1 sec
25 [ I i i
- 1.; _!‘ ___A__iﬁvzi J— _1 ._di_.
i A e
o
Wy o, Tpm 0 (e J L
: 17 —
SRR
-25 i i L

69



70

e,8e¢ 0

-1l

122,56

P deg 120

117.5

11,5 . -

0g, deg -120

ezl J@y

Figure 19. - Spacecraft ¥g (pitch) axis 2,74 N-m constant disturbance case with-
out fine pointing control with ay = 0°, ay = 120°, ay = -120°, g =0°,
Wiy = 25 000 rpm, and Wy = 0 initially, and without gravity-gradient or
power-transfer torques.
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Figure 20. - Spacecraft Xg (roll) axis initial pointing error case with ay = 0°,
Qg = 120°, ag = -1200, By = 0°, Wy = 25 000 rpm, W= 0, ¢=10 arc sec,
and § =y = 0 initially, and without gravity-gradient or power-transfer torques.
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Figure 22. - Concluded.
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Figure 23. - Spacecraft Vs {piteh) axis reorientation rate acquisition case with o, = 0o,
@y = 120°, ag = -1200, £ = 0°, wyy=0,and wg. =25 000 rpm initially, and
without gravity-gradient or power-transfer torques.
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